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Abstract

This paper presents a material classification method us-

ing an off-the-shelf Time-of-Flight (ToF) camera. We use a

key observation that the depth measurement by a ToF cam-

era is distorted in objects with certain materials, especially

with translucent materials. We show that this distortion is

caused by the variations of time domain impulse responses

across materials and also by the measurement mechanism

of the existing ToF cameras. Specifically, we reveal that the

amount of distortion varies according to the modulation fre-

quency of the ToF camera, the material of the object, and

the distance between the camera and object. Our method

uses the depth distortion of ToF measurements as features

and achieves material classification of a scene. Effective-

ness of the proposed method is demonstrated by numerical

evaluation and real-world experiments, showing its capa-

bility of even classifying visually similar objects.

1. Introduction

Material classification plays an important role for com-

puter vision applications, such as semantic segmentation

and object recognition. One of the major challenges in ma-

terial classification is that different materials may yield very

similar appearance. For example, artificial plastic fruits

and real fruits confronting a camera produce visually sim-

ilar RGB images that are difficult to distinguish. One of

the possible strategies to distinguish similar appearance is

to use the optical responses of the target object such as

spatial, angular, and temporal spread of the incident light.

Because different materials may have different optical re-

sponses due to their own subsurface scattering and diffuse

reflection properties, it is expected that a more reliable ma-

terial classification can be achieved using such optical cues

on top of the RGB observations.

Recently, Heide et al. [13] have developed a method that

recovers transient images from observations by a low-cost

(a) Mayonnaise bottle (b) Distorted depth
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(c) Material classification (d) Corrected depth

Figure 1: Depth distortion of a ToF camera. (a) A mayon-

naise bottle is measured by a Kinect. (b) Measured depth in

a 3D view. There is a gap in depth between the mayonnaise

and label regions. We use this depth distortion for material

classification. (c) Material segmentation result. The ma-

terial label is assigned for each pixel. (d) Application of

material classification to depth correction. Depths are cor-

rected based on the segmentation result and the distortion

database. Depth gaps among materials are corrected and a

faithful 3D shape is recovered.

Time-of-Flight (ToF) camera, which is originally designed

for depth measurement. There are other related studies

that use ToF cameras for recovering ultra-fast light prop-

agation, e.g., impulse response, of the scene [20, 32, 33]

with some hardware modifications and computation. Moti-

vated by these previous approaches that exploit the temporal

spread of light, we aim to classify materials using an indi-

rect temporal cue from an off-the-shelf ToF camera without

explicitly recovering impulse response.
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We develop a material classification method based on a

key observation that the measured depth of a translucent

object becomes greater than the actual depth as shown in

Fig. 1(b), where the depth gap between the mayonnaise and

paper label regions is obvious. We show that this depth dis-

tortion is caused by the time delay due to subsurface scat-

tering and varies along with both the modulation frequency

of ToF camera and the distance between the target and the

camera. Using the depth distortions as a feature of the ma-

terial, we propose an exemplar-based material classification

method.

The chief contributions of this paper are twofold. First,

we demonstrate that the material classification is tractable

by an off-the-shelf ToF camera, e.g., Xbox One Kinect.

Our method uses the distorted depth measurements as an

indirect temporal cue for material classification without ex-

plicitly recovering impulse responses; therefore it does not

require any modifications of hardware unlike [13, 20]. Sec-

ond, we show how ToF measurements are distorted inside

materials and along with depths. By moving the target ob-

ject along the depth direction, rich information about the

target can be obtained and it serves as important clue for

realizing material classification.

2. Related Work

Non-invasive and non-contact material classification is

an important research topic in computer vision and yet re-

mains a challenging task. There are several prior works

for material estimation. The methods based on the visual

appearance, e.g., color, shape, and/or textures of the mate-

rial [3, 44, 28, 37, 38], typically only require a single RGB

image; thus, the setups are easy to realize. The main prob-

lem is that this approach suffers from similar appearances

of different materials, e.g., texture-less boards, resulting in

a lower accuracy due to the lack of information.

The class of approaches based on the optical properties,

such as BRDF [49, 27], shading [29], and spectrum [36],

has a capability of distinguishing visually similar objects

in higher accuracy because the optical properties convey

richer information about the material. However, construct-

ing such measurement systems and building database of

samples generally require carefully controlled settings. This

class includes approaches based on other physical prop-

erties, e.g., elasticity [4], and water permeation and heat-

ing/cooling process [35]. Our method falls into this class

because we use a temporal response of the incident light,

which implicitly measures the optical and physical proper-

ties of target objects. Unlike these approaches, our method

uses an off-the-shelf ToF camera and needs only single ob-

servation at least, hence the cost of constructing the system

is as low as the appearance-based methods.

In the context of material classification using a ToF cam-

era, Su et al.’s method [41] is closely related. They propose

a method that classifies a material from raw ToF measure-

ments by sweeping over several modulation frequencies and

phases. While the approach is shown effective, it requires

special customization of a ToF camera for obtaining the

measurements. In contrast, our method only uses an off-the-

shelf ToF camera. We show that the material classification

can be achieved by such a simple setup by exploiting the

depth-dependency of the measurements. In addition, while

Su et al.’s method requires calibration for building a corre-

lation matrix and post-processing of the data after measure-

ment, our method does not require either of them.

For the comprehensible overview of temporal light trans-

port, we refer the reader to the recent survey by Jarabo et

al. [17]. A time domain impulse response of the scene, as

known as light-in-flight and transient imaging, can be ob-

tained using an interferometer [8], holography [1, 22], and

femtosecond-pulsed laser [46, 24, 45]. The time domain im-

pulse response can be also recovered using the ToF camera,

where the cost and temporal resolution drastically decrease.

Because the ToF camera is a device for measuring sub-nano

second phenomena, it can be used for visualizing the light

propagation of the scene by frequency sweep [13, 26, 33]

and optical coding [20, 32], while it requires customization

of a ToF camera. These measurement methods may be able

to be applied to the task of material classification [47], al-

though they require careful and expensive setups. On the

other hand, our method bypasses the exact recovery of the

time domain impulse response and simply uses the mea-

sured depth of a ToF camera.

When a ToF camera measures a multi-path scene, the

measured depth is distorted due to inter-reflections and

subsurface scattering, known as the multi-path interfer-

ence. Mitigating the multi-path interference and recover-

ing the correct depth is of broad interest, and it has been

studied by assuming two-bounce and simplified reflection

model [7, 5, 9, 18], parametric model [15, 23], K-sparity

and optimization [2, 6, 34], stereo ToF cameras [25], using

external projector [30], and frequency sweep [19]. Instead

of recovering the correct depth, we use a distorted depth as

a cue for the material classification. We show that, once the

material classification has been achieved, the classification

result can be used for correcting depths.

There are other scene analysis methods using ToF cam-

eras, e.g., recovering the shape of transparent and translu-

cent objects [39, 43], and measuring a slice of BRDF [31].

In addition, computational imaging methods using a ToF

camera, such as imaging around the corner [14, 21], separat-

ing direct and indirect light transport [47, 32, 11], imaging

the velocity of the object [12, 40], and imaging at a specific

depth [42] are proposed. Our method can also be consid-

ered one of the scene analysis methods as it aims at material

classification of the scene.
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3. Time-of-Flight Observation

To begin with, we briefly review the measurements

that are obtained by a ToF camera. A correlation-based

ToF camera illuminates a scene by an amplitude modu-

lated wave fω(t) and measures its attenuated amplitude and

phase delay. From the phase delay and the speed of light,

the depth of the scene can be obtained.

In general, a scene can have the “multi-path” effect due

to inter-reflections and subsurface scattering, which degrade

the depth estimation accuracy. Image formation models

regarding the multi-path effect have been well understood

thanks to the previous works [13, 20, 11]; hence, we briefly

explain one of the models that we are going to use in this

paper. Following a phasor representation [11], amplitude

and phase of the returned wave can be represented by a sin-

gle complex value c ∈ C, called phasor, governed by the

modulation frequency ω. The measured amplitude ãω ∈ R

and depth d̃ω ∈ R of the ToF camera are obtained as

{

d̃ω = c
4πω arg c(ω),

ãω = |c(ω)| ,
(1)

where the arg operator returns the angle of a complex pha-

sor, and c is the speed of light.

When the illumination wave is a sine wave, i.e., fω(t) =
sin(2πωt), the observed phasor can be represented as

c(ω) =

∫ ∞

0

r(t− τ)e−2πiωtdt, (2)

where τ(> 0) is the time of flight toward the surface of

the object, r(t) is the impulse response, or a point spread

function (PSF), of the object along with the time t, and i is

the imaginary unit. The impulse response is the summation

of all possible paths ρ ∈ P; therefore, r(t) can be written

as

r(t) =

∫

P

rρδ(|ρ| − t)dρ, (3)

where rρ is the contribution of the path ρ, |ρ| is the time

travelled along the path ρ, δ(t) is the Dirac delta function,

and t = 0 indicates the time when the impulse light hits

the surface of the object. Figure 2(b) illustrates a phasor

representation of the multi-path ToF observation. The time

domain PSF r(t− τ) is expanded onto the imaginary plane,

and the phasor depicted by a red arrow is the integration of

expanded PSF over the angle. Because the negative domain

of r(t) is zero, Eq. (2) expresses that ToF camera measures

the Fourier coefficients of the impulse response at the fre-

quency of the light modulation.

Frequency dependent depth distortion The principle of

the ToF camera assumes that the impulse response forms

t

(a) Sinusoidal wave

Re

t
Expand

Im

(b) Phasor representation

Re

Im

(c) Phasor at different

depth

t

(d) Distorted wave

Re

Im

(e) Distorted unit ball

Re

Im

(f) Large distortion of

depth

Figure 2: Phasor representation of ToF observations. (a) Si-

nusoidal illumination, (b) Time domain PSF is expanded to

the imaginary plane (orange). (c) When the object is placed

at different depths, the observation gets rotated but phase

distortion remains the same as (b). (d) Biased periodic il-

lumination. This toy example adds 20% harmonics to the

sinusoid for biasing. (e) The unit ball of the phasor repre-

sentation is distorted due to the biased illumination. (f) The

object is placed at the same depth as (c). The distortion of

the phase becomes different than (e) and (c).

Dirac delta function as r(t) = αδ(t), where α is the ampli-

tude decay of modulated light. In this case, the measured

depth d̃ω becomes

d̃ω =
c

4πω
arg

∫ ∞

0

αδ(t− τ)e−2πiωtdt

︸ ︷︷ ︸

=2πωτ

=
cτ

2
= d, (4)

where d = cτ
2 is the ground truth depth of the object. Equa-

tion (4) represents that the accurate depth can be obtained

regardless of modulation frequency ω, if the impulse re-

sponse of the scene is exactly the Dirac delta.

In reality, almost all materials except for the perfect mir-

ror surface yield various shapes of impulse responses due

to diffuse and subsurface scattering [47]. When the target

object exhibits a temporally broad shape of the impulse re-
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sponse, band-pass characteristic in the frequency domain

becomes unique to the object. Accordingly, ToF observa-

tion c(ω) can take an arbitrary value, because c(ω) is a

Fourier coefficient of the impulse response r(t) at the fre-

quency ω. In such a case, arg c(ω) does not necessarily

represent the correct phase 2πωτ , and as a result, the mea-

sured depth d̃ω is distorted, and the distortion varies with the

modulation frequency ω. This frequency-dependent depth

distortion is one of our key observations, and our method

exploits this property for the goal of material classification.

The shift in the time domain corresponds to the shift of

phase in the Fourier domain:

F [r(t− τ)] = e−2πiωτF [r(t)]

= e−2πiωτ r̂(ω),

where F [·] is the Fourier transform and r̂(ω) is the Fourier

transform of the function r(t). Measured depth d̃ω can then

be represented as

d̃ω =
c

4πω
arg

(
e−2πiωτ r̂ (ω)

)

= d+
c

4πω
arg r̂(ω).

(5)

The second term c
4πω arg r̂(ω) is the depth distortion at fre-

quency ω. In Fig. 2(b), the depth distortion is illustrated as

a blue arrow.

While a single observation of depth distortion can be the

same among different materials by chance, multiple obser-

vations using varying modulation frequencies can be used

for enriching the measurement. Such multiple observations

can be obtained with negligible latency because the ToF

measurement is much faster than the ordinary video frame

intervals [33].

However in practice, it is not straightforward to mea-

sure distortions using many different frequencies by an off-

the-shelf ToF camera. For example, Kinect has only three

modulation frequencies, and the frequencies cannot be eas-

ily changed; hence, only three distortion measurements are

practically available, which may be too few for developing

a reliable material classification system. To increase the in-

formation about the material in an alternative and easy way,

our method employs a strategy of changing the distance be-

tween the camera and object. Now, we discuss the depth-

dependency of the depth distortion.

Depth-dependent depth distortion When the target ob-

ject is placed at a different depth d+∆d, r(t− τ) is shifted

by ∆τ = 2∆d
c

in the time domain. As a result, the measured

depth d̃′ω becomes

d̃′ω =
c

4πω
arg

(

e−2πiω(τ+∆τ)r̂ (ω)
)

= d+∆d+
c

4πω
arg r̂(ω).

(6)

The measured depth is just shifted by ∆d, and the depth

distortion c
4πω arg r̂(ω) remains the same as the one at the

original position as in Eq. (5). Figure 2(c) illustrates the

depth distortion at a different depth in a phasor representa-

tion. The blue arrow, which represents the depth distortion,

is the same as that of the original position as illustrated in

Fig. 2(b).

So far, we have assumed that the illumination is a perfect

sinusoidal wave. In practice, because a high-frequency si-

nusoidal wave is difficult to generate, today’s ToF cameras

emit non-sinusoidal periodic waves that contain high-order

harmonics [48, 10]. When the illumination wave has har-

monics components as shown in Fig. 2(d), the ToF obser-

vation exhibits depth-dependency as illustrated in Figs. 2(e)

and 2(f). Let us suppose that the distorted sinusoidal wave

is biased as fω(t) = bω(2πωt) sin(2πωt), where bω(2πωt)
is a periodic bias of the illumination wave due to harmonics.

The observed phasor is then written as

c(ω) =

∫ ∞

0

r(t− τ)bω(2πωt)e
−2πiωtdt. (7)

The above indicates that the observation c(ω) is the Fourier

coefficient of r(t−τ)bω(2πωt), where the impulse response

r(t) is distorted by the bias bω(2πωt). Obviously, the bi-

ased impulse response r(t− τ)bω(2πωt) varies along with

τ , i.e., the observation varies along with the depth.

Usually, this depth-dependent variation is unwanted;

therefore, previous works attempted to eliminate it. For ex-

ample, Su et al. [41] remove the depth-dependent variation

using a correlation matrix. In contrast, we use the depth-

dependent distortion as an important cue for material clas-

sification as it contains rich information about the target’s

response.

4. Material Classification

Our method uses either or both of the frequency- and

depth-dependent depth distortions of ToF observations for

the purpose of material classification. For describing how

to use the depth distortions for material classification, we

begin with the case where the actual depth is known and

later describe a more general case where such an assump-

tion is eliminated.

When the target object is placed at a known depth loca-

tion, the depth distortion with respect to the actual depth is

directly measurable. Let us suppose that the target object is

measured by n(≥ 1) modulation frequencies and m(≥ 1)
positions. The absolute depth distortion vωi,dj

can be ob-

tained by

vωi,dj
= dj − d̃ωi,j , (8)

where d̃ωi,j is the measured depth at the i-th modulation

frequency ωi (i ∈ {1, · · · , n}) and the j-th position (j ∈
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{1, · · · ,m}), and dj is the actual depth at the j-th position.

By aligning these distortions, a mn-length vector v can be

formed as a feature vector of the object as

v =
[
vω1,d1

· · · vωn,dm

]T
. (9)

Because the actual depth of the target object is not gen-

erally accessible, we develop a feature that does not require

the knowledge of the actual depth. Although we cannot di-

rectly obtain the depth distortion in this case, the relative

depth distortions among multiple frequencies and/or multi-

ple depths can be alternatively used. When multiple modu-

lation frequencies are available, i.e., n ≥ 2 case, the relative

depth distortion v′ωi,dj
can be computed by regarding the

measurement of one of the modulation frequencies, say the

n-th modulation frequency, as the reference measurement.

The relative depth distortions can be obtained by taking dif-

ferences from the reference measurement as

v′ωi,dj
= vωi,dj

− vωn,dj
= d̃ωn,j − d̃ωi,j , (10)

where i ranges from 1 to n − 1. We can then setup an

m(n − 1)-length vector v by aligning the relative depth

distortions, and it can be used as a feature vector for ma-

terial classification. Although the reference measurement

d̃ωn,j may be distorted depending on the material, the fea-

ture vector v encapsulating the relative distortions conveys

discriminative cues for classifying materials.

In a similar manner, for the case where a single modu-

lation frequency and multiple depth locations is available,

i.e., n = 1 and m ≥ 2, the relative depth distortions

among depth locations v′′ω1,dj
can be obtained by regarding

the measurement of the m-th depth position as the reference

measurement as

v′′ω1,dj
= vω1,dj

− vω1,dm
= d̃ω1,m − d̃ω1,j +∆dj , (11)

where ∆dj is the amount of movement from the base posi-

tion, which should be measured.

4.1. Classifier

We assume that we have a database of materials that con-

sists of the feature vectors measured using predefined mod-

ulation frequencies and depth locations in a certain range

beforehand. For classification, the target object is measured

with the full or partial set of the predefined modulation fre-

quencies and depth locations. Once we obtain the feature

vector of the target object as a query, we use the material

database as exemplar to look up the closest material.

While any arbitrary classifiers can also be alternatively

used, it is desired for classifiers to have the following two

properties. First, since the feature vectors tends to be high-

dimensional while the number of materials in the database

may be small, it is preferred the classifier uses a model with

a small number of parameters, or non-parametric like our

choice. Second, a capability of handling missing elements

in the feature vector is practically important, because the

measurement is sometimes missing due to specular reflec-

tion on the object surface, or becomes saturated with near-

distance reflectance.

For these reasons, we adopt a simple nearest neighbor

classifier, which assesses the Euclidean distance (ℓ2 norm).

To deal with the missing or uninformative saturated ob-

servations, we remove such elements in the feature vector

when evaluating the distance. The distance ξp between the

feature vector v of the target object and the training vector

v
p of the object p in the dataset can be computed as

ξp =
1

N

nm∑

k=0

{

0 vk = N/A

(vk − v
p
k)

2 otherwise,
(12)

where N is the number of valid elements, and vk and v
p
k are

k-th element of vectors v and v
p, respectively. Using this

distance, we can classify the object by searching the nearest

class p̂ as

p̂ = argmin
p

ξp.

Throughout the evaluation in this paper, we use this simple

nearest neighbor classifier to assess the effectiveness of the

depth distortion features for material classification.

5. Experiments

We evaluate the proposed method by a ToF camera and

a linear translation stage system as shown in Fig. 3. We

use Microsoft Kinect v2 for a ToF camera, which has three

modulation frequencies (n = 3), and a OptoSigma’s trans-

lation stage (SGSP46-800). As the official Kinect API does

not support an access to depth measurements of each fre-

quency, we have slightly altered an open-source software

libfreenect2 to obtain such data1.

First, we measure the depth distortion data for many ma-

terials and examine their differences across materials. The

target object is placed on a linear translation stage changing

the depth from 600 mm to 1250 mm (m = 2600), and is

measured several times with changing the orientation of the

object. The ground truth depth is obtained from the position

of the translation stage, which is only used this test. Figure 4

shows the depth distortion of three materials; white acrylic

board, polystyrene board, and opal diffusion glass. They

are visually similar object (white, planer, and no texture)

hence appearance based methods have difficulty to distin-

guish these objects. On the other hand, depth distortions of

ToF observations show significant difference across materi-

als and retain consistency over measurement sessions.

1The source code is publicly available on our website.
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ToF camera (Kinect)

Translation stage

Target object

ToF camera (Kinect)

Translation stage

Target object

Figure 3: Experimental setup. We use Kinect as a ToF cam-

era, and the target object is placed on a linear translation

stage.

Using this depth distortion data, we assess the accuracy

of material classification by the nearest neighbor classifier.

The dataset consists of 26 materials including metal, wood,

plastic, fabric, and so on, with 13 orientations for each

material to enable the classifier to deal with target objects

with arbitrary surface orientations. We evaluate the classi-

fication accuracy using three different features: Frequency-

dependent distortion, depth-dependent distortion, and both

of them. Using the feature with only frequency-dependent

distortion (n = 3 and m = 1), the accuracy is 57.4%. This

low accuracy is due to the limited availability of the number

of frequency channels. Using only depth-dependent distor-

tions (n = 1, m = 2600, and using Eq. (11)), the accuracy

is improved to 81.6%2. Finally, with both of frequency- and

depth-dependent distortions (n = 3 and m = 2600), the

accuracy is further improved to 90.5%. The confusion ma-

trix is shown in Fig. 5. While many materials are correctly

classified, some materials are miss-classified. For exam-

ple, plaster and paper, or expanded and rigid polyvinyl chlo-

rides have similar impulse responses due to similar scatter-

ing properties; therefore they are sometimes miss-classified.

Feature variations w.r.t surface orientation When the

surface orientation of the target object varies, the time-

domain impulse response may also vary. To confirm the

effect of surface orientations, we measure a wooden board

by changing the orientation and assess the variation of fea-

ture vectors with respect to varying orientations. Figure 6

shows the variation of the nearest distance from the wood

class in the feature space along with the surface orientation

of the target object. The red line indicates the upper-bound

distance from the wood class, under which the query fea-

ture vector is correctly classified as “wood.” In other words,

once the distance from the wood class to the query feature

goes beyond this upper-bound distance, it will be misclassi-

fied. The feature is stable under around 70 degrees, which

indicate that the depth distortion feature is reliable for the

2Details and confusion matrices are shown in the supplementary.

confronting surface in practice but may break down for a

steep-slanted surface, e.g., near the edges of a round-shape

object.

Feature variations w.r.t. shape When the shape of the

target object varies, the time domain impulse response may

also vary, especially for a concave shape where significant

inter-reflections occur. To confirm the effect of the shape of

the object, we set up a scene of folded cardboard that can

change the opening angle. We measure the folding edge

area of the cardboard with changing the opening angle from

the small angle (closed) via 180 degrees (flat) to large angle

(protruded) as shown in Fig. 7(a). The distances of feature

vectors between the folded and flat cardboards are plotted in

the blue line in Fig. 7(b). The red line represents the upper-

bound of the flat cardboard class, under which the target is

regarded a flat cardboard, and a moderate robustness against

the shape variation is shown.

Material segmentation Our method can be applied in a

pixel-wise manner to achieve material-based segmentation.

Figure 8 shows a couple of example of material segmen-

tation. For the scene shown in Fig. 8(a), all objects in the

scene are white and the material classes are not obvious in

the RGB image. With our method, the material is classified

for each pixel as shown in Fig. 8(b). For this application, we

use only frequency-dependent variations without the depth-

dependent ones, i.e., m = 1, because the alignment of the

pixels may become hard when the geometric relationship

between the camera and scene varies. As a result, the re-

sult appears to be a little bit noisy, but it still shows faithful

classification performance. For this experiment, we used a

reduced database containing only four materials as the di-

mensionality of the feature vector is limited. Figure 8(c)

shows another scene where wallets made of genuine and

fake leather are placed, and they are correctly classified as

shown in Fig. 8(d).

Depth correction Once materials are classified, the dis-

torted depths can be corrected for recovering an accurate

3D shape using the material database that contains the sam-

ples of distortions for all materials. An example of the depth

correction is shown in Fig. 1. Because mayonnaise has sig-

nificant subsurface scattering, the measured depth of may-

onnaise region is strongly distorted than that of the label as

shown in Fig. 1(b). Figure 1(c) shows our result of material

segmentation. Again, we do not change the depth of the tar-

get; therefore, only frequency-dependent variation is used

(m = 1) with a limited database. Although some artifacts

are observable because of the limited amount of measure-

ment and steep surface orientations, mayonnaise and the la-

bel regions are largely well separated. Using the segmenta-

tion result and depth distortion database, a faithful 3D shape
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